Aerospace Toolbox

Working with Environmental Models

Aerospace Toolbox provides standards-based environmental models for atmosphere, gravity, geoid height, and magnetic field.

The atmospheric models help you calculate ambient flight conditions and normalize flight data. They incorporate the 1976 Committee on Extension to the Standard Atmosphere (COESA) and International Standard Atmosphere (ISA) models, as well as nonstandard day models from U.S. military specifications (MIL-HDBK-310 and MIL-STD-210C).

Additional atmospheric model functions implement mathematical representations from these models: 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE) and 1986 Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA). The NRLMSISE model provides atmospheric temperatures and densities at altitudes from 0 to 1,000 kilometers for a specified location and time. The CIRA model provides mean climatic data for atmospheric temperature, zonal wind, and either geopotential height or pressure for altitudes from 0 to 120 kilometers.


A portion of the script (bottom left) built with Aerospace Toolbox utilities to calculate G-forces during flight (top right). The chosen utilities converted units, accessed the Committee on Extension to the Standard Atmosphere (COESA) model, calculated true airspeed, and imported Digital Datcom aerodynamic coefficients.

The gravity, geoid height, and magnetic field model functions help you analyze data and develop algorithms for navigation and geodesy applications. The gravity model is based on the 1984 World Geodetic System (WGS84) gravitational model. The geoid height function uses the 1996 Earth Geopotential Model (EGM96) to calculate geoid height for a specified latitude and longitude. The magnetic field model incorporates the 2000 and 2005 versions of the World Magnetic Model (WMM), which both use the National Imagery and Mapping Agency (NIMA) standard to calculate total intensity, horizontal intensity, declination, inclination, and the vector of the Earth's magnetic field for a specified location and time.

Next: Unit Conversion and Axes Transformation

Try Aerospace Toolbox

Get trial software

MATLAB におけるデータ可視化:Tips and Tricks

View webinar