﻿

Accelerating the pace of engineering and science

• 評価版
• 製品アップデート

# lla2ecef

Convert geodetic coordinates to Earth-centered Earth-fixed (ECEF) coordinates

## Syntax

p = lla2ecef(lla)
p = lla2ecef(lla, model)
p = lla2ecef(lla, f, Re)

## Description

p = lla2ecef(lla) converts an m-by-3 array of geodetic coordinates (latitude, longitude and altitude), lla, to an m-by-3 array of ECEF coordinates, p. lla is in [degrees degrees meters]. p is in meters. The default ellipsoid planet is WGS84. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

p = lla2ecef(lla, model) is an alternate method for converting the coordinates for a specific ellipsoid planet. Currently only 'WGS84' is supported for model. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

p = lla2ecef(lla, f, Re) is another alternate method for converting the coordinates for a custom ellipsoid planet defined by flattening, f, and the equatorial radius, Re, in meters. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

## Examples

Determine ECEF coordinates at a latitude, longitude, and altitude:

```p = lla2ecef([0 45 1000])

p =

1.0e+006 *

4.5107    4.5107         0```

Determine ECEF coordinates at multiple latitudes, longitudes, and altitudes, specifying WGS84 ellipsoid model:

```p = lla2ecef([0 45 1000; 45 90 2000], 'WGS84')

p =

1.0e+006 *

4.5107    4.5107         0
0.0000    4.5190    4.4888```

Determine ECEF coordinates at multiple latitudes, longitudes, and altitudes, specifying custom ellipsoid model:

```f = 1/196.877360;
Re = 3397000;
p = lla2ecef([0 45 1000; 45 90 2000], f, Re)

p =

1.0e+006 *

2.4027    2.4027         0
0.0000    2.4096    2.3852```