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Introduction 

Model predictive control (MPC) is an advanced controls technique that has been used for 

process control since the 1980s. With the increasing computing power of microprocessors, the 

use of MPC has spread to real-time embedded applications, often used in the automotive and 

aerospace industries. MPC can handle multi-input multi-output (MIMO) systems with coupled 

input-output channels, which simplifies the architecture of the control loop. Designing a 

controller for such a system with PID controllers, for example, would be challenging since the 

control loops and associated responses would be intertwined. Additionally, MPC can handle 

constraints on the inputs, outputs, and states, which is important since real-world systems have 

physical limits that need to be respected. Other MIMO techniques such as linear quadratic 

regulators (LQRs) cannot handle constraints explicitly. Another advantage of MPC is that 

controls calculated with MPC take into account what will (likely) happen several steps into the 

future to improve performance. This is possible because the MPC uses an internal prediction 

model of the system that is controlled. Finally, MPC can optimize multiple objectives, including 

economics, controls, and safety. 

If MPC has all these advantages, do we still need traditional methods like PIDs? Unlike PIDs, 

MPC is more challenging to apply in high-bandwidth, feedback control applications— that is, 

applications where the response time of the control loop must be short. This is because, for 

feedback control, MPC solves an optimization problem online, and that requires significant 

computing power and memory. Specifically, MPC works as follows (Figure 1):  

1. At each time step, the solver solves a constrained optimization problem. The objective is to

minimize a cost function that encodes the desired control objective (e.g., trajectory tracking),

subject to state/output constraints, manipulated variable (MV) constraints, and the internal

plant dynamics. Depending on the nature of the optimization problem (panel 1), MPC can be

divided into linear and nonlinear. In linear MPC, the cost function is quadratic with respect to

the outputs/states and control, while the internal prediction model and constraints are linear

with respect to the same. In nonlinear MPC, the cost, internal prediction model, and

constraints can be nonlinear.

2. The optimization outputs a sequence of MV moves for a user-specified time horizon; this is

often referred to as open-loop control (panel 2).

3. The controller applies only the first MV move of the solution to the system and discards the

rest (panel). MPC is considered feedback control because current prediction model states

are required to calculate optimal control actions. The states can be measured or estimated

by appropriate state estimators such as Kalman filters at run time.

4. The time horizon is then shifted by one step, current state information is acquired (panel 4),

and this process is repeated indefinitely.

Because the time horizon is constantly moving forward after each time step, MPC is also 

referred to as receding horizon control.  
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Figure 1. The MPC process. 

MPC (linear or nonlinear) requires many design choices that affect the complexity of the 

underlying optimization problem, and thus, how fast the controller can run. Common challenges 

include, for example, choosing the appropriate MPC type, structure, and model complexity 

based on plant dynamics and control objectives, or selecting the appropriate MPC settings 

based on hardware/software limitations. The goal of this white paper is to summarize the design 

choices that affect execution speed of linear and nonlinear MPC controllers and provide tips and 

tricks that will let you run MPC controllers faster with Model Predictive Control Toolbox™. Note 

that, unless mentioned otherwise, the following sections will focus on using MPC for feedback 

(closed-loop) control, as these applications can greatly benefit from execution speedup. Model 

Predictive Control Toolbox can also be used in open-loop applications (e.g., as a trajectory 

optimization technique). Many of the topics covered are still applicable in this scenario, but, 

because trajectory optimization is typically performed offline or at a much slower rate, speed is 

often not as a big concern as in feedback control problems. 

The sections that follow are organized as shown in Figure 2 and cover the following three ways 

to speed up MPC controllers: 

• Pick appropriate parameter values for the MPC problem.

• Choose the appropriate solver and solver options.

• Change your approach.

For completeness, some guidelines on minimizing memory requirements of MPC controllers are 

also provided. 
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Figure 2. Methods for speeding up model predictive controllers. 
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Pick Appropriate Parameter Values for the MPC Problem 

Regardless of whether you are using linear or nonlinear MPC, the design parameters that need 

tuning remain effectively the same. This section covers the key parameters of MPC problems, 

with explanations on how they affect the computational complexity of the MPC optimization 

problem. 

Sample Time 

The sample time is a key concept in model predictive control and can be separated into two 

parts: the prediction sample time and the control sample time. When designing an MPC 

problem, the prediction sample time and control sample time are often set to be equal or even 

treated as one parameter, but it is important to distinguish between the two and how they affect 

performance. 

Prediction Ts 

The prediction Ts is the sample time of the internal prediction model. It defines how long each 

prediction step lasts, and the value of all MVs remains constant during each prediction step 

(panel 2 in Figure 1). Intuitively, the prediction sample time determines the upper bound of 

achievable control bandwidth. The product of the prediction horizon (discussed in the next 

section) and the prediction sample time is the prediction time of the controller—that is,  how far 

into the future the controller is planning for. Since the prediction time is often provided as part of 

the control objective, the value of the prediction sample time is often selected together with the 

prediction horizon. 

The upper bound of prediction Ts is determined by plant dynamics and control response time. 

For example, if prediction Ts is slow, you may not have enough control bandwidth to stabilize an 

open-loop unstable plant. On the other hand, faster prediction Ts will require a longer prediction 

horizon to keep the prediction time constant. However, as explained in the Prediction Horizon 

section, longer prediction horizons lead to more decision variables and more constraints, which 

make the optimization problem larger (higher memory footprint) and more complex to solve. A 

rule of thumb is to try and fit 10–20 MV moves within the rise time of the open-loop step 

response. 

Control Ts 

The control Ts determines the sample time of the MPC controller. It defines how often the MPC 

optimization problem is solved at run time (panel 3 in Figure 1). The control sample time is 

typically equal to the prediction sample time, but it can also be set to be faster (but not slower). 

Faster control Ts generally improves performance (i.e., bandwidth) and robustness (i.e., gain 

and phase margins) to some extent. Also, as control Ts gets smaller, rejection of unknown 

disturbances, including discrepancies between internal MPC model and actual plant, usually 

improves and then plateaus. Qualitatively, this makes sense as the controller is able to respond 

faster to changes in the environment. The control sample time value at which performance 

plateaus typically depends on the plant dynamic characteristics. For example, processes with 

slow dynamics will not benefit much from small control sample times, unlike real-time control 

applications such as motor control.  
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However, as the control sample time becomes small, the computational effort increases 

dramatically as the MPC optimization problem is solved more frequently. Thus, the optimal 

choice is a balance of performance and computational effort. To determine the control sample 

time, first test a less aggressive controller (large control Ts, possibly equal to prediction Ts) that 

produces acceptable performance. Next, decrease control Ts and monitor the execution time of 

the controller. If you are working on a real-time application, you can further decrease control Ts 

as long as the optimization safely completes within each sampling period under normal plant 

operating conditions. As mentioned in the following sections in more detail,  there is no way to 

predict how many solver iterations are required to find an optimal solution, so using a 

suboptimal solution of the optimization problem makes it easier to tune control Ts. Keep in mind 

that the smallest control Ts that an MPC controller can achieve is system-dependent, and will 

differ across different (real-time) hardware and simulation platforms.  

 

Prediction Horizon  

The prediction horizon, p, is the number of future control intervals the MPC controller must 

“plan” for (using the internal plant model for prediction) when optimizing its MVs. The duration of 

each control interval is determined by the prediction sample time. Similar to the sample time 

discussion above, the choice of prediction horizon depends on the characteristics of the plant 

dynamics. The main guideline on how to select p is in fact to satisfy the prediction time (p * 

prediction Ts) requirements for the system of interest. Typically, systems with slower dynamics 

require longer prediction times such that the MPC controller can sufficiently predict how the 

manipulated variables may affect the cost/outputs of interest. Thus, the values of prediction 

horizon p and prediction Ts are, in a sense, intertwined. 

 “We were searching for a prototyping solution that was fast for 

development and robust for production. We decided to go with Simulink for 

controller development and code generation, while using MATLAB to 

automate development tasks.” 

— Alan Mond, Voyage 

Tip 

To minimize the number of computations, choose prediction Ts and control Ts that are fast enough 

to satisfy control requirements, but not any faster. 

To run MPC at a fast rate, consider choosing control Ts < prediction Ts to retain a reasonably sized 

optimization problem that can be solved faster than the control sample time. 

Learn More 

How to choose the sample time 

Sampling rate in real-time environment 

 

https://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html#responsive_offcanvas
https://www.mathworks.com/help/mpc/ug/generate-code-and-deploy-controller-to-real-time-targets.html#mw_e20971c9-dfcb-46f6-903a-c64a617b6163
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However, larger p values lead to more decision variables and constraints (optimization 

constraints should be satisfied for each control interval), which lead to a larger optimization 

problem; dimensions of many matrices in the MPC optimization problem are proportional to p 

(see table for details) with longer execution times and higher memory footprint. Using linear 

MPC as an example, when only MVs are being optimized (as opposed to also optimizing with 

respect to states and outputs, for example), the total number of decision variables is p * # of 

MVs, which leads to a (p * # of MVs) x (p * # of MVs) Hessian matrix. Similarly, the number of 

MV constraints is 2p * # of MVs. Typically, the prediction horizon should not be adjusted to tune 

the controller. The value of p * Ts should be such that the controller is internally stable and 

anticipates constraint violations and environment changes early enough to allow corrective 

action. This may be accomplished by making sure that p * Ts covers the rise time or transient 

time of the open-loop step response. If the plant is open-loop unstable, p should not be greater 

than the maximum number of control intervals required for the open-loop step response of the 

plant to become infinite. 

Prediction horizon vs. control Ts vs. prediction Ts through an example 

Assume that the desired prediction time (p * prediction Ts) is 1 second and that we know (from 

experiments) the average execution time for solving a single MPC optimization problem on 

specific hardware. 

Case 1: For p=10, assume we know that execution time is 1 ms. For 1 second prediction time, 

this corresponds to a prediction Ts of 100 ms. Since the prediction Ts is larger than the total 

execution time, the controller can run on the hardware without overrun. To improve 

performance, we could choose the control Ts to be faster than the prediction Ts as long as it is 

< 1 kHz. 

Case 2: For p=25, assume we know that execution time is 40 ms. For 1 second prediction time, 

this corresponds to a prediction Ts of 40 ms. Since the prediction Ts is equal to the total 

execution time, this is the smallest prediction Ts (or largest prediction horizon p) we can use to 

run the controller on the hardware without overrun. The control Ts cannot go any lower than 

40 ms either. 

If both cases above lead to good performance, which one should you choose? This varies by 

case, but since larger p values lead to larger memory footprint, the first case may be preferable 

for hardware with limited memory capacity. 

 

Tip 

As the prediction horizon increases, the controller can better anticipate and plan for future events, 

but the solution time and memory requirements for the controller increase.  

Learn More 

How to Design Model Predictive Controllers (3:00) 

 

https://www.mathworks.com/help/mpc/ug/generate-code-and-deploy-controller-to-real-time-targets.html#bvnyu9s
https://www.mathworks.com/videos/how-to-design-model-predictive-controllers-1494253496907.html
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Control Horizon  

The control horizon, m, is the number of MV moves to be optimized at control interval k and 

takes values between 1 and the prediction horizon p (Model Predictive Control Toolbox uses a 

default control horizon value of m = 2). MV moves determine the values of the MPC solution 

(open-loop control) at each step of the control horizon, for each manipulated variable specified 

in the problem (Figure 3). As a result, the number of variables that need to be optimized by the 

solver grow with the number of control inputs and the control horizon value. For example, when 

only MVs are decision variables (see Optimization Solvers section), the number of optimization 

variables is m * # of MVs. If states are also included as decision variables (e.g., in sparse 

problem formulations), the number of optimization variables is m * # of MVs + p * # of states. In 

MPC, regardless of your choice for m, when the controller operates, only the first optimized MV 

move of the MPC solution is used (at the beginning of the horizon) and any others are 

discarded. Practically, this means that the longer the control horizon, the more time it takes to 

solve the optimization problem and the more information is discarded when the controller moves 

to the next interval. 

 

Figure 3. Example of MPC solution (open-loop control) at interval k with m=2 and p=7. 

 

Manipulated Variable Blocking 

Manipulated variable blocking is an alternative to the simpler control horizon concept, and it has 

many of the same benefits. Instead of using a scalar value to specify the control horizon, 

manipulated variable blocking divides the prediction horizon into a series of blocking intervals by 

specifying the control horizon as a vector of block sizes. The sum of the block sizes must match 

the prediction horizon p. This allows you to specify not only the desired number of MV moves, 

but also the duration of each move (as a multiple of the prediction sample time). Figure 4 shows 

Tip 

m<<p means fewer variables to optimize at each control interval, which promotes faster 

computations. 

Learn More 

How to Choose the Prediction Horizon 

How to Choose the Control Horizon 

https://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html#bujyygn
https://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html#buj0ytu
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an example of manipulated variable blocking for a control horizon of m=[2 3 2] and prediction 

horizon of p=7. 

 

Figure 4. MPC solution at interval k with m=[2 3 2] and p=7. 

 

Constraints  

As mentioned previously, MPC solves a constrained optimization problem at each time step. 

Typically, the larger the number of constraints, the longer it takes to solve the problem as 

complexity grows. Constraints limit the space of admissible controls, increasing the risk of 

running into infeasible problems—problems that that are impossible to satisfy. Keeping the 

number of constraints to the absolutely necessary makes the optimization problem easier to 

solve. 

Model Predictive Control Toolbox lets you define both hard and soft constraints to help you set 

up a well-defined optimization problem. Hard constraints must be satisfied by the solution, while 

soft constraints can be violated when necessary. Hard constraints, unlike soft constraints, 

typically limit the space of admissible solutions, so the optimization process takes longer to 

converge. If the only constraints in your application are bounds on MVs, the MV bounds can be 

hard constraints, as they are by default. MV bounds alone cannot cause infeasibility. The same 

is true when the only constraints are on MV increments. However, a hard MV bound with a hard 

MV increment constraint can lead to an over-constrained problem and infeasibility. The same is 

true if the plant is subject to disturbances and there are either hard output constraints or hard 

mixed input-output constraints. As rule of thumb, you should opt for soft constraints when 

possible. 

Tip 

Similar to the simpler control horizon concept, manipulated variable blocking allows you to control 

the number of decision variables at each control interval, which promotes faster computations. 

Learn More 

Manipulated Variable Blocking 

 

https://www.mathworks.com/help/mpc/ug/manipulated-variable-blocking.html
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Run-Time Parameters 

Model Predictive Control Toolbox allows certain design parameters of the MPC problem to vary 

at run time. For example, to tune the cost function weights, you can either make modifications 

offline or online, as the controller operates, by specifying weights that vary over the prediction 

horizon. Similarly, you can tune the control and prediction horizon at run time during prototyping, 

or you may want to adjust these parameters online, for example in cases where the plant 

dynamics change during operation. Constraints may also vary over the prediction horizon, for 

example to compensate for changing operating conditions. While useful for certain situations, 

adjusting parameters at run time also increases complexity, as more calculations are necessary 

to set up the MPC optimization problem. Thus, the optimal choice here is also a balance of 

performance and computational effort. 

 

Choose the Appropriate Solver and Solver Options 

For techniques like MPC that rely heavily on numerical optimization, performance is heavily 

dependent on choosing the right solver and solver configuration. Even for the same set of MPC 

parameters discussed previously, a better solver choice could lead to much faster solutions than 

a poor one. In this section, you will learn about the different solver options available in Model 

Predictive Control Toolbox, as well as some tips and tricks to reach solutions faster, regardless 

of the solver choice. 

Tip 

Keep the number of constraints small and opt for soft as opposed to hard constraints when 

possible. 

Learn More 

Constraints for Linear MPC 

Constraints for Nonlinear MPC 

Terminal Constraints 

Time-Varying Constraints 

 

Tip 

To limit the number of calculations required at each time step, keep the number run-time parameter 

changes small. 

Learn More 

Tune Weights at Run Time 

Update Constraints at Run Time 

Adjust Horizons at Run Time 

Specify Constraints for Nonlinear MPC 

 

https://www.mathworks.com/help/mpc/ug/specifying-constraints.html
https://www.mathworks.com/help/mpc/ug/specify-constraints-for-nonlinear-mpc.html
https://www.mathworks.com/help/mpc/ug/terminal-weights-and-constraints.html
https://www.mathworks.com/help/mpc/ug/time-varying-weights-and-constraints.html
https://www.mathworks.com/help/mpc/ug/run-time-weight-tuning.html
https://www.mathworks.com/help/mpc/ug/run-time-constraint-updating.html
https://www.mathworks.com/help/mpc/ug/adjust-horizons-at-run-time.html
https://www.mathworks.com/help/mpc/ug/specify-constraints-for-nonlinear-mpc.html
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Optimization Solvers 

In MPC applications, a high-quality solver is required to carry out real-time optimization. 

Common performance requirements involve execution time, memory footprint, accuracy, 

robustness, etc. Selecting the appropriate solver could lead to significant improvement in 

execution time, even without making changes to other parameters of the MPC problem. 

Some solvers are specifically designed for real-time applications with fast control sample time 

and limited memory capacity. These are referred to as “embedded” solvers and can be roughly 

categorized in two ways:  

• Based on algorithm used (e.g., active-set, interior-point, augmented-Lagrangian)

• Based on matrix sparsity (e.g., dense or sparse)

Model Predictive Control Toolbox provides active-set and interior-point methods with dense 

and/or sparse formulations through built-in solvers and integration with third-party tools (Table 

1). While the solver algorithm and underlying representations will likely not matter for many 

cases, these choices could be the decisive factor for real-time performance in fast MPC 

applications: 

Active-set algorithm. Active-set methods can provide fast and robust performance for small- 

and medium-scale optimization problems. Any active-set solver slows down significantly when 

the number of constraints grows (imagine an MPC problem with a long prediction horizon over 

which the constraints are enforced). Therefore, the worst-case execution time can easily lead to 

task overrun on hardware. 

Interior-point algorithm. Interior-point methods can provide superior performance for large-

scale optimization problems, such as MPC applications that enforce constraints over large 

prediction and control horizons. Also, the number of iterations required by interior-point methods 

to converge is more or less constant (i.e. independent from the number of constraints). Thus, it 

is easier to estimate worst-case execution time on embedded system. 

Dense problems. From an MPC perspective, if the only decision variables are the manipulated 

variables, we have a dense optimization problem. The dense formulation has fewer decision 

variables than the sparse one, which makes it efficient, especially when used with manipulated 

variable blocking and small control horizons (e.g., with fewer decision variables). However, if the 

internal plant is open-loop unstable, the matrices in a dense problem might become near-

singular as the prediction horizon grows. 

Sparse problems. From an MPC perspective, if the manipulated variables, states, and outputs 

are decision variables, the optimization problem is sparse. Sparse problems have more decision 

variables than dense problems, but produce near-diagonal matrices with a large number of zero 

elements. The sparse structure of these matrices can be exploited to reduce computation times 

and memory footprint of the solver. Unlike dense formulations, sparse problems produce 

matrices with much better condition numbers, especially when the internal plant model is open-

loop unstable. 



12 

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. 

Other product or brand names may be trademarks or registered trademarks of their respective holders. 

Table 1. Solver options in Model Predictive Control Toolbox. 

Built-In Solvers Third-Party Solver Options 
L

in
e

a
r 

• Active-set solver – KWIK (dense)

• Interior-point solver (dense)

• Custom solver
o Custom implementation
o Third-party solver

• FORCES PRO Plugin (with FORCES PRO
license)

o Interior-point solver (sparse)

N
o

n
li

n
e
a

r 

• fmincon function with SQP

algorithm from Optimization Toolbox
(sparse, similar to active-set)

• Custom solver
o Custom implementation
o Third-party solver

• FORCES PRO Plugin (with FORCES PRO
license)

o Interior-point solver (dense, sparse)
o SQP solver (dense, sparse)

Table 1 summarizes the solver options available in Model Predictive Control Toolbox. For linear 

MPC problems, the toolbox supports two built-in, “dense” QP solvers: an active-set solver that 

uses the KWIK algorithm and an interior-point solver that uses a primal-dual algorithm with a 

Mehrotra predictor-corrector. To solve the optimization problem in nonlinear MPC, Model 

Predictive Control Toolbox uses Optimization Toolbox™, and specifically, the fmincon function 

with the SQP algorithm. You can also specify a custom solver for your (linear or nonlinear) MPC 

controller. This solver is called in place of the built-in solvers at each control interval. Lastly, you 

can now use FORCES PRO, a real-time embedded optimization software tool developed by 

Embotech AG, to simulate and generate code MPC controllers designed using Model Predictive 

Control Toolbox. For information on using the FORCES PRO solvers together with Model 

Predictive Control Toolbox, see the FORCES PRO documentation for linear and nonlinear 

MPC. 

In summary, when selecting and configuring the solver for your application, consider the 

following: 

• If the total number of manipulated variables and rates, outputs, and constraints is large

(i.e., more than a few hundred because of a large prediction horizon and large number of

free moves), consider using an interior-point solver.

• If the internal plant is open-loop unstable, consider using a sparse problem formulation.

• Otherwise, an active-set/dense solver would still be a viable option.

To determine which solver is best for your application, you can also consider simulating your 

controller across multiple simulation scenarios using different solvers. 

https://www.sciencedirect.com/science/article/abs/pii/0098135494E00014?via%3Dihub
https://forces.embotech.com/Documentation/mw_mpc_plugin/index.html
https://forces.embotech.com/Documentation/mw_nlmpc_plugin/index.html
https://forces.embotech.com/Documentation/mw_nlmpc_plugin/index.html
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Initial Guess 

In numerical optimization, the initial values used for the decision variables play a big role in 

deciding the course the optimizer will follow. For example, while a properly configured standard 

linear MPC optimization problem has a unique solution, nonlinear MPC optimization problems 

often allow multiple solutions (local minima). In such cases, it is important to provide a good 

starting point near the (global) optimum when possible.  

If you are using MPC for feedback control (closed-loop control), it is best practice to warm-start 

your (nonlinear) solver. To do so, use the predicted state and manipulated variable trajectories 

from the previous control interval as the initial guesses for the current control interval. The 

rationale behind this approach is that the solution should not vary significantly across sequential 

control intervals. This will provide a good initial search direction and speed up the optimization 

as the solver will avoid wasting computational resources to reinvent the wheel. For the first 

control interval, where there is no previous solution to use as initial guess, selecting simple 

feasible trajectories, such as straight lines, will likely be more efficient than setting the initial 

guess randomly, especially for active-set solvers. 

 “With our traditional approach it would have taken about a year to develop 

a controller as complex as the MPC; with Model-Based Design it took us 

about six months to develop a prototype.” 

“The generated code for the QP solver was extremely efficient, so there 

was no need for us to explore other solvers … With Embedded Coder, 

once we had confirmed the functionality of the controller it took almost no 

time to implement it on the embedded processor.” 

—  Taku Takahama,  Hitachi Automotive Systems 

Tip 

The size and configuration of the MPC problem affects the relative performance of the available 

solvers. To determine which solver is best for your application, consider simulating your controller 

across multiple simulation scenarios using different solvers. 

Learn More 

QP Built-In and Custom Solvers 

Constrained Nonlinear Optimization Algorithms in Optimization Toolbox 

Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver 

FORCES PRO Plugin for Model Predictive Control Toolbox 

 

https://www.mathworks.com/help/mpc/ug/qp-solver.html
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://www.mathworks.com/help/mpc/ug/optimize-tuberculosis-treatment-using-nonlinear-mpc-with-custom-solver.html
https://forces.embotech.com/Documentation/mw_mpc_plugin/index.html
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Analytical Jacobians (Nonlinear MPC) 

Unlike linear MPC, in nonlinear MPC the plant dynamics and constraints can be nonlinear. 

Additionally, the cost function can be a nonquadratic (linear or nonlinear) function of the 

decision variables. As mentioned previously, to solve the optimization problem in nonlinear 

MPC, Model Predictive Control Toolbox uses Optimization Toolbox, and specifically, the 

fmincon function with the SQP algorithm as the built-in solver. At each MPC time step, the 

SQP method solves an optimization subproblem that optimizes a quadratic model of the 

objective subject to a linearization of the constraints (which include the plant dynamics). 

If you select the built-in SQP solver and choose not to specify the Jacobian for the plant, 

(custom) constraints, and (custom) cost function analytically, the controller computes the 

Jacobians using numerical perturbations. Given that Jacobians are calculated multiple times at 

each time step, this process is time consuming. To improve computational efficiency, it is best 

practice to specify Jacobians analytically. You can use Symbolic Math Toolbox™ to 

automatically calculate Jacobians from mathematical expressions with symbolic variables, thus 

avoiding tedious manual calculations. The quadrotor example linked below shows how to do 

this. If calculating the exact Jacobian is not feasible, specifying a good-enough approximation 

may also be sufficient. See how approximate Jacobians can be used for parallel parking with 

nonlinear MPC. The Jacobians are used to specify the search direction of the optimization, so 

an approximate Jacobian may still guide the optimization in the right direction. 

Another option is to use automatic differentiation to calculate the required Jacobians. Automatic 

differentiation (autodiff) refers to a set of techniques to numerically compute derivatives by 

following an algorithmic approach. While not as efficient as providing Jacobians analytically, 

autodiff is more efficient than numerical perturbations and can improve execution time. For 

example, you can use Model Predictive Control Toolbox with third-party autodiff tools, or you 

can use the FORCES PRO Plugin (Table 1), which makes use of automatic differentiation. 

Tip 

For feedback control, it is best practice to warm-start your solver with a feasible guess, especially in 

nonlinear MPC. 

Learn More 

Initial Guess in Nonlinear MPC 

Initial Guess in Linear MPC 

 

https://www.mathworks.com/help/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/configure-optimization-solver-for-nonlinear-mpc.html#mw_349cf2f0-da4a-4178-814a-2a14f7a5535f
https://www.mathworks.com/help/mpc/ug/qp-solver.html#mw_770eab41-1162-4c20-9d4e-2c188a9fa512
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Suboptimal MPC Solution  

For a given MPC application with constraints (linear or nonlinear), there is no way to predict how 

many solver iterations are required to find an optimal solution. Also, in real-time applications, the 

number of iterations can change dramatically from one control interval to the next, depending on 

the solver algorithm used (e.g., for active-set methods). In such cases, the worst-case execution 

time can exceed the limit that is allowed on the hardware platform and determined by control 

sample time. 

You can guarantee the worst-case execution time for your MPC controller by applying a 

suboptimal solution after the number of optimization iterations exceeds a specified maximum 

value. To set the worst-case execution time, first determine the time needed for a single 

optimization iteration by experimenting with your controller under nominal conditions. Then, set 

an upper bound on the number of iterations per control interval. For example, if it takes around 

1 ms to compute each iteration on the hardware and the control sample time is 10 ms, set the 

maximum number of iterations to be no greater than 10. As mentioned previously, for interior-

point solvers, the number of iterations used to converge approximately constant, which makes it 

easier to estimate worst-case execution time. 

While the solution reached after the final iteration is not optimal, when applied, it will satisfy all 

specified constraints. 

  

Tip 

Analytical Jacobians and automatic differentiation speed up the solution of the optimization problem 

in nonlinear MPC. 

Learn More 

Cost Function Jacobian 

Custom Constraint Jacobians 

Prediction Model Jacobian 

Control of Quadrotor Using Nonlinear Model Predictive Control 

 

Tip 

You can guarantee the worst-case execution time for your MPC controller by applying a suboptimal 

solution after the number of optimization iterations exceeds a specified maximum value.  

Learn More  

Use Suboptimal Solution in Fast MPC Applications 

Use Suboptimal Solution for Robotic Manipulator Planning with Nonlinear MPC 

 

https://www.mathworks.com/help/mpc/ug/specify-cost-function-for-nonlinear-mpc.html#mw_ec61fbdc-3879-4dae-8569-b48ba271111e
https://www.mathworks.com/help/mpc/ug/specify-constraints-for-nonlinear-mpc.html#mw_acfd2947-504f-4d3a-9e23-7dad6680d7d8
https://www.mathworks.com/help/mpc/ug/specify-prediction-model-for-nonlinear-mpc.html#mw_6eb5a593-c403-47f7-b2d8-fed832e17a61
https://www.mathworks.com/help/mpc/ug/control-of-quadrotor-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/simulate-mpc-controller-using-suboptimal-solution.html
https://www.mathworks.com/help/robotics/examples/plan-and-execute-collision-free-trajectory-kinova-gen3.html
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Automatic Code Generation 

Perhaps the least invasive way to run MPC faster in simulations, without adjusting any of the 

problem or solver parameters, is through automatic code generation. All built-in solvers in Model 

Predictive Control Toolbox support code generation; you can automatically generate C code for 

your MPC design in MATLAB® (with MATLAB Coder™) or Simulink® (with Simulink Coder™ or 

Embedded Coder™) and deploy it to an arbitrary number of targets. 

By setting the code generation target to MATLAB executable, you can generate and call a mex 

function of your MPC controller directly in MATLAB to reproduce simulation results and evaluate 

performance. This approach will lead to much faster MPC calculations, and thus shorter 

simulation times, which is useful when running multiple simulations using the same MPC 

controller design. You can change the code generation target to C static library, dynamic library, 

executable, and so forth by using different settings. 

  

Change Your Approach 

If the previous suggestions do not speed up the optimization problem, it may be worth taking a 

step back to consider alternative approaches. For example, it would not make sense to use an 

expensive nonlinear MPC controller over a linear one that leads to comparable performance. 

This section discusses model reduction, the complexity of different MPC approaches, as well as 

imitation learning—a machine learning method that can be used to avoid solving the MPC 

problem in real time. 

Prediction Model Complexity 

As mentioned previously, MPC operates based on an internal prediction model of the physical 

plant. This model can be used to plan for several time steps into the future, to ensure that 

solutions satisfy the system dynamics, to calculate linearizations in nonlinear MPC, for 

estimation, and so forth. Even one redundant state in the internal MPC model leads to more 

constraints, more derivative calculations, more integrations, more outputs/estimated states, and 

therefore a significant computational overhead. Adding a single additional manipulated variable 

leads to m (control horizon) additional optimization variables. Thus, the complexity of this 

prediction model, and specifically the number of manipulated variables, number of states, and 

number of outputs, affects calculations and the overall optimization speed. 

Tip 

You can automatically generate C/C++ code for your MPC controller and use it for faster simulation 

and deployment. 

Learn More  

Parallel Parking Using Nonlinear MPC with Automatic Code Generation 

Simulation and Code Generation Using Simulink Coder 

Generate Code to Compute Optimal MPC Moves in MATLAB 

 

https://www.mathworks.com/help/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/code-generation-with-simulink-coder.html
https://www.mathworks.com/help/mpc/ug/code-generation-of-computing-optimal-mpc-moves-in-matlab.html
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Typically, the number of manipulated variables and outputs is fixed and dictated by the 

problem/control objective. However, if, for example, there are decoupled input-output channels 

in the dynamic equations, you may consider designing separate control loops for these, to 

reduce the number of outputs and optimization variables in the MPC problem. Unlike with 

manipulated variables and outputs, control engineers have more flexibility and options for 

reducing the number of states in a model. One option is to use reduced-order modeling 

techniques where the objective is to eliminate states that do not have a significant contribution 

to the dynamics. Find out more about model reduction techniques with Control System 

Toolbox™.  

Another option is to simply use a lower-fidelity model. MPC can rely on state feedback to 

compensate for model discrepancies, as long as the internal plant captures the dynamics 

essential to the control objective. Finally, consider whether you even need to capture the 

dynamics of the system you are working with. For example, Figure 5 shows an MPC controller 

planning collision-free joint trajectories for a robotic manipulator. In this scenario modeling every 

joint as a simple double integrator would suffice to solve this problem. 

 

Figure 5. Planning a collision-free trajectory with MPC for a pick-and-place application. 

 

Tip 

Keep the number of inputs/manipulated variables, states, and outputs of the internal plant model 

small to simplify the MPC optimization problem. 

Learn More 

Model Reduction Techniques 

Pick-and-Place Workflow for Robotic Manipulators with Nonlinear MPC 

 

https://www.mathworks.com/help/control/model-simplification-1.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/control/model-simplification-1.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/control/model-simplification-1.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/robotics/examples/pick-and-place-workflow-using-stateflow.html
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MPC Type 

Figure 6 shows the different types of MPC controllers supported by Model Predictive Control 

Toolbox. Depending on the problem, selecting the appropriate MPC approach can lead to 

significant improvements in execution speed: 

• In linear time-invariant (LTI) MPC, the internal plant is linear and remains constant 

across time steps and across the prediction horizon.  

• An adaptive MPC controller requires more run-time computations than LTI MPC, since 

the internal plant is updated at each time step (but does not vary across the prediction 

horizon). In addition, adaptive MPC requires you to implement a model-updating 

strategy, which might be computationally intensive. 

• Linear time-varying (LTV) MPC is similar to adaptive MPC but updates the internal plant 

at each time step and across the prediction horizon.  

• Explicit MPC, unlike the previous approaches where calculations are made online, uses 

offline computations to determine regions of the state space where control laws are 

linear in state. These precalculated controllers are stored and then used at run time 

instead of solving an optimization problem. 

• Gain-scheduled MPC switches between a predefined set of LTI MPC and explicit MPC 

controllers, in a coordinated fashion, to control a nonlinear plant over a wide range of 

operating conditions. To implement gain-scheduled MPC, you first need to design an LTI 

MPC or explicit MPC controller for each operating point, and then design a scheduling 

signal that switches the controllers at run time.  

• Nonlinear MPC deals with nonlinear constraints and plant and possibly nonquadratic 

cost functions. 

 

Figure 6. Types of MPC supported by Model Predictive Control Toolbox. 
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Figure 7 shows how different MPC approaches compare in terms of speed and memory 

requirements. Explicit MPC leads to fastest execution but also has the largest memory footprint, 

as well as a more limited set of features compared with other approaches. Nonlinear MPC is the 

most powerful, generic approach for MIMO systems. However, it is also the most 

computationally expensive approach, with the highest memory footprint after explicit MPC. 

Memory requirements for gain-scheduled (explicit) MPC depend on the number of controllers 

designed, which is also reflected in Figure 7. 

Figure 7. Speed and memory comparison of different MPC approaches  

in Model Predictive Control Toolbox. 

To ensure fastest run-time execution, use the simplest MPC approach that leads to acceptable 

performance. For example: 

• If you are working with a linear or linearized system, start with LTI MPC, and gradually 

move to gain-scheduled, adaptive, or LTV MPC as needed until performance meets 

expectations.  

• Adaptive and LTV MPC should generally be preferred over gain-scheduled MPC when 

possible as the former two techniques require only one controller to be designed and are 

also less sensitive to switch scheduling.  

• For fast MPC applications, consider switching to explicit MPC if possible.  

• If the physical plant is highly nonlinear, you may start by designing a nonlinear MPC 

controller and then evaluate whether LTV or adaptive MPC can achieve the same 

performance. Model Predictive Control Toolbox lets you easily run a nonlinear MPC 

controller as linear (adaptive or time-varying) by setting the RunAsLinearMPC option in 

the nlmpc object. 

https://www.mathworks.com/help/mpc/ref/nlmpc.html#mw_a76ceb25-581b-4fbb-bdd6-95fa1b7686c5
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Hierarchical Architecture 

Due to the predictive nature of the optimization, as well as the internal plant model used in the 

process, MPC can also be used for planning problems. For example, instead of directly using 

the solution of the optimization problem for low-level control, MPC could apply this solution to 

the internal plant model to generate reference output trajectories for another controller to track. 

Figure 8 summarizes the two architectures. Architecture I uses MPC, in a sense, for both 

planning and control as there is no separate planning module. Architecture II decouples 

planning and control and has a dedicated planner (could be implemented with MPC or not) that 

generates reference trajectories and a dedicated controller (MPC or other) that is tracking these 

references. In this second architecture, if the environment is static, the planning part could also 

be performed offline. If there are moving obstacles that the system needs to avoid, dynamic 

planning with the planner in the loop is necessary. Typically, in architecture II, the outer loop 

(planning) does not need to run as fast as the inner loop (tracking control). 

 

Figure 8. Different approaches in control system architecture. 

By decoupling planning and low-level control, the controls engineer has more flexibility on how 

to set up the control system. For example, imagine a scenario where MPC is in architecture I, 

but the optimization is not fast enough for real-time application. If the problem was restructured 

using architecture II, the inner loop would still need to run at the same (fast) sample rate. 

Tip 

To ensure the fastest run-time execution, use the simplest MPC approach that leads to acceptable 

performance. 
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However, with planning and control now decoupled, the MPC optimization problem in this case 

would be simpler, which could potentially allow faster control rates. If the improvement is not 

sufficient for using MPC in the inner loop, the outer loop would still be a valid option. As 

mentioned earlier, the outer loop typically runs at a slower rate than the inner loop, which makes 

it easier for the optimization to satisfy the real-time requirement. In this case, trajectory tracking 

in the inner loop could be accomplished with PID control, for example. Note that the outer loop 

planner does not need to be based on MPC either; popular planners like RRT can be used 

instead. 

 

 

As an example, architecture II was used by Tata Motors European Technical Centre (TMETC) 

to develop and deploy autonomous driving software in a Tata Hexa SUV. The team used Model 

Predictive Control Toolbox to develop lateral and longitudinal controllers that track reference set 

points. 

 

Imitation Learning 

Recent advances in computing power have greatly reduced the training time of machine 

learning models. As an alternative to methods described earlier, you may want to rely on 

machine learning to speed up your MPC controller. At its foundation, an MPC controller is just a 

function that takes in state values and outputs control values; you just don’t have the model that 

converts states to controls in closed form, since calculations are optimization-based. This is 

where a machine learning model can be used to help you parameterize and approximate, or 

imitate, the behavior of an MPC controller. 

 “A small team of engineers pulled together an autonomous vehicle with off-

the-shelf hardware and control algorithms developed and implemented 

with Model-Based Design. Though the system isn’t production-ready, it 

does demonstrate important design concepts with a pragmatic design 

approach.” 

—   Dr. Mark Tucker, TMETC 

Tip 

Using a hierarchical, two-stage control system architecture decouples planning from (low-level) 

control and may simplify the optimization problem enough for MPC to be applicable in either or both 

stages. 

 

https://www.mathworks.com/company/user_stories/tata-motors-accelerates-development-of-autonomous-vehicle-control-algorithms-with-model-based-design.html
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Imitation learning is effectively a regression problem (supervised learning), so it requires training 

data (state values and associated MPC control values). Training time depends on the size of the 

dataset, the type of surrogate model used, and the complexity of the MPC problem solved. For 

imitation learning, MPC calculations are completed offline to create the training dataset. It is 

crucial to carefully construct the training dataset to be representative of the region or data that 

the surrogate model/controller will operate on; model performance will only be as good as the 

training data. Figure 9 shows performance of a neural network approximating an MPC controller 

designed with Model Predictive Control Toolbox for lane-keeping assist (LKA). The behavior of 

the neural network and the original MPC controller are almost identical.  

Figure 9. Comparison between original MPC controller and neural network approximation (DNN). 

Imitation learning leads to faster MPC executions, since the corresponding optimization 

problems are solved offline, and only a forward pass on the learned model is necessary to 

calculate controls for given state values. Compared with explicit MPC, where lookup tables are 

used to switch between explicit, linear-in-state models for different regions of the state space, 

imitation learning allows more flexibility as the surrogate models can be nonlinear with respect 

to the state. Theoretically, this means that a single highly nonlinear surrogate model could 

accurately approximate the response of an MPC controller, unlike explicit MPC, where different 

models map to different state-space regions. For example, (deep) neural networks are great 

function approximators that can learn complex nonlinear mappings by using the appropriate 

layer architecture. Finally, unlike explicit MPC, there is no need to identify polyhedral regions in 

imitation learning, which could lead to reduced memory footprint. 

If machine learning models have so many advantages, you may be wondering, why is imitation 

learning not the standard approach for real-time MPC? Machine learning models like neural 

networks have a large number of parameters, which make it hard to intuitively understand the 

internal mechanics that generate the model output. This lack of explainability is the main reason 

why surrogate models like neural networks are often treated like black boxes. Additionally, 

unlike traditional control methods, performance of machine learning models is more challenging 

to verify and often involves exhaustive simulations. These limitations can be prohibitive, 
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especially for safety-critical applications. If your application is a good fit though, imitation 

learning can be a good way to speed up your MPC controller. 

 

Memory Requirements 

Another important performance aspect to consider when designing an MPC controller is 

memory footprint. This is particularly important for deployment, since embedded devices 

typically have limited memory capacity. While this white paper focuses on the execution time of 

MPC controllers, many of the design parameters discussed previously also affect the memory 

requirements of the controller. 

MPC problem parameters. This table associates the dimensions of the matrices Model 

Predictive Control Toolbox generates for a linear MPC problem with several parameters 

discussed in the previous section. Parameters like the prediction horizon, control horizon, 

number of manipulated variables, number of optimization variables, number of states and 

outputs, and number of constraints all increase the memory requirements of a (linear) MPC 

controller. Online update features for constraints, weights, plant models, and horizons require 

more RAM, since some intermediate matrices used in the optimization are no longer constant.  

Solver. The solver choice and configuration also play a role; for example, a sparse QP solver 

reduces the memory footprint of the Hessian matrix if the number of manipulated variables and 

free moves is large.  

MPC type. As Figure 7 shows, memory requirements vary with type of MPC as well, with LTI 

MPC and (gain-scheduled) explicit MPC having the smallest and largest memory footprint, 

respectively.  

Data type. Setting the controller to operate with single-precision data for both simulation and 

code generation leads to smaller memory footprint.  

In summary, as you are tuning MPC parameters to optimize execution speed, make sure you 

consider the effect your choices may have on memory footprint of the controller. 

Tip 

Imitation learning allows you to approximate the behavior of an MPC controller with machine learning 

models like neural networks. For best performance, make sure the dataset you use for training is 

representative of the state-space region you want the MPC approximation to operate in. 

Learn More  

Imitate MPC Controller for Lane Keeping Assist 

Imitate Nonlinear MPC Controller for Flying Robot 

 

https://www.mathworks.com/help/mpc/ug/generate-code-and-deploy-controller-to-real-time-targets.html#bvnyu9s
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-nonlinear-mpc-controller-for-flying-robot.html
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Conclusion and Next Steps 

This white paper presented various ways to speed up MPC controllers. For a summary of the 

tips and tricks covered, see Table 2. 

 

Table 2. Tips and tricks to speed up model predictive controllers. 

P
ic

k
 A

p
p

ro
p

ri
a

te
 P

a
ra

m
e

te
r 

V
a

lu
e

s
 

To minimize the number of computations, choose prediction Ts and control Ts 

that are fast enough to satisfy control requirements, but not any faster. 

To run MPC at a fast rate, consider choosing control Ts < prediction Ts to retain a 

reasonably sized optimization problem that can be solved faster than the control 

sample time. 

As the prediction horizon increases, the controller can better anticipate and plan 

for future events, but the solution time and memory requirements for the controller 

increase.  

m<<p means fewer variables to optimize at each control interval, which promotes 

faster computations. 

Similar to the simpler control horizon concept, manipulated variable blocking 

allows you to control the number of decision variables at each control interval, 

which promotes faster computations. 

Keep the number of constraints small and opt for soft as opposed to hard 

constraints when possible. 

To limit the number of calculations required at each time step, keep the number of 

run-time parameter changes small. 

Tip 

Embedded applications require small memory footprint. As you are tuning MPC parameters to 

optimize execution speed, consider the effect your choices may have on memory footprint of the 

controller. 

Learn More 

QP Problem Construction for Generated C Code 

Simulate and Generate Code from MPC Controller in Single Precision 

 

https://www.mathworks.com/help/mpc/ug/generate-code-and-deploy-controller-to-real-time-targets.html#bvnyu9s
https://www.mathworks.com/help/mpc/ug/code-generation-with-simulink-coder.html#d120e22416
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The size and configuration of the MPC problem affects the relative performance 

of the available solvers. To determine which solver is best for your application, 

consider simulating your controller across multiple simulation scenarios using 

different solvers. 

For feedback control, it is best practice to warm-start your solver with a feasible 

guess, especially in nonlinear MPC. 

Analytical Jacobians and automatic differentiation help speed up the solution of 

the optimization problem in nonlinear MPC. 

You can guarantee the worst-case execution time for your MPC controller by 

applying a suboptimal solution after the number of optimization iterations exceeds 

a specified maximum value.  

You can automatically generate C/C++ code for your MPC controller and use it for 

faster simulation and deployment. 
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Keep the number of inputs/manipulated variables, states, and outputs of the 

internal plant model small to simplify the MPC optimization problem. 

To ensure the fastest run-time execution, use the simplest MPC approach that 

leads to acceptable performance. 

Using a hierarchical, two-stage control system architecture decouples planning 

from (low-level) control and may simplify the optimization problem enough for 

MPC to be applicable in either or both stages. 

Imitation learning allows you to approximate the behavior of an MPC controller 

with machine learning models like neural networks. For best performance, make 

sure the dataset you use for training is representative of the state-space region 

you want the MPC approximation to operate in. 

 

Take the next step to speed up your MPC project with Model Predictive Control Toolbox. 

Explore 

Understanding Model Predictive Control (7 Videos) – Video Series 

How to Design Model Predictive Controllers (3:00) – Video 

How to Implement Model Predictive Controllers (3:09) – Video  

See Real-World Examples 

Tata Motors European Technical Centre Accelerates Development of Autonomous Vehicle 

Control Algorithms with Model-Based Design – User Story  

Developing Longitudinal Controls for a Self-Driving Taxi – User Story 

https://www.mathworks.com/videos/series/understanding-model-predictive-control.html
https://www.mathworks.com/videos/how-to-design-model-predictive-controllers-1494253496907.html
https://www.mathworks.com/videos/how-to-implement-model-predictive-controllers-1494253157457.html
https://www.mathworks.com/company/user_stories/tata-motors-accelerates-development-of-autonomous-vehicle-control-algorithms-with-model-based-design.html
https://www.mathworks.com/company/user_stories/tata-motors-accelerates-development-of-autonomous-vehicle-control-algorithms-with-model-based-design.html
https://www.mathworks.com/company/newsletters/articles/developing-longitudinal-controls-for-a-self-driving-taxi.html
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Hitachi Automotive Systems Develops a Model Predictive Controller for Adaptive Cruise Control 

with Model-Based Design – User Story 

Model Predictive Control Approach to Design Practical Adaptive Cruise Control for Traffic Jam – 

Technical Article 

Download 

Trial Software for Model Predictive Control Toolbox 

 

https://www.mathworks.com/company/user_stories/hitachi-automotive-systems-develops-a-model-predictive-controller-for-adaptive-cruise-control-with-model-based-design.html
https://www.mathworks.com/company/user_stories/hitachi-automotive-systems-develops-a-model-predictive-controller-for-adaptive-cruise-control-with-model-based-design.html
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/m/FASTzero17_MPC4ACC_20170719.pdf
https://www.mathworks.com/campaigns/products/trials.html?prodcode=MP

