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Verifying Code When Software  
Reliability Is Critical 
By Paul Barnard, Marc Lalo, and Jim Tung

For many embedded software projects, the primary verification 

goal is to find as many bugs as possible, as quickly as possible. The static 

analysis tools commonly used for this purpose are good at detecting flaws, 

but they do not prove that source code is free of fatal run-time errors. As a 

result, these tools do not prevent endless debugging loops and lengthy code-

checking procedures. More seriously, they may leave potentially catastrophic 

defects undetected —unacceptable for applications that require high reliabil-

ity. PolySpace™ code verificaton products provide a different approach—one 

that proves the absence of certain types of run-time errors.  

To accomplish this, a code verification 
tool must exhaustively investigate every piece 
of code and verify its reliability against all 
possible data values. It must often perform 
tasks of a mathematical sophistication that 
exceeds the capabilities of a standard error-
detection tool. For example, it must: 

• Solve numerical algorithms 
• Interpret pointers 
•  Mathematically model programming con ­

structions, such as loops, if-then-else, and 
undecidable conditions

•  Read all language­specific constructions 
In addition, the tool must provide diag-

nostics in a format that is simple and acces-
sible to any user (Figure 1). 

Solving Numerical Algorithms 
Among the arithmetic errors that can occur 
in the following code, we need to prove the 
absence of a division by zero at the high-
lighted line. The problem can be reformulated Figure 1. Using simple color-coding to show code verification results.
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static void Pointer_Arithmetic ()
{
  int tab[100];
  int i,*p = tab;

  for(i = 0; i < 100; i++, p++)
    *p = 0;

  if(get_bus_status() > 0)
  {
     if(get_oil_pressure() > 0)
       *p = 5;
     else
       itt;
  }

  i = random_int();
  if (random_int()) *(p-i) = 10;

  if (0<i && i<=100)
  { p = p - i;
  *p = 5;
  }
}
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as the following question: Can x and y be 
equal at the same time? 

int where_are_the_errors (int input)

{

    int x,y,k,l;

    k = input / 100;

    x = 2;

    y = k + 5;

    while (x < 10)

    {

        x++;

        y = y + 3;

    }

    if ((3*k + 100) > 43)

    {

        y++;

        x = x / (x - y);

    }

    return x;

}

To answer that question, the verification 
tool must statically compute x and y, starting 
at line 1 and going through the code line by 
line, an exhaustive procedure that would be 
virtually impossible to perform accurately 
during a visual code review.  

To solve these kinds of numerical prob-
lems, code verification tools must understand 
and model data closely—for example, by us-
ing complex polyhedrons or other geometri-
cal shapes (Figure 2).

reading Pointers (Aliasing)
When data refers to other data —for example, 
by means of pointers in the C language —the 
verification tool must recognize the original 
data and the referenced data. It must then 
perform pointer analysis to determine how 
the original data and the referenced data af-
fect each other. 

In the following code, the verification tool 
must recognize that aliasing is subject to a condi-
tional reassignment at the first highlighted line.

# define RANGE (X,MIN,MAX) \

X=random; while ((X<MIN) || 

(X>MAX)) X = random; 

volatile int random; 

int x,y;

int f(int *ptr)

{

    int results;

    if (random) ptr = &y;

    *ptr = *ptr + 1;

    results = x + y + *ptr;

    return results;

}

void main(void)

{

    int tmp;

    RANGE(x, 0, 10);

    RANGE(y, -10, 10);

    tmp = f(&X);

    tmp = (2*tmp*tmp + 3*tmp + 1) / 

    (tmp + 19);

    tmp++;

}

Figure 2.  A cloud of data points approximated by com-
plex polyhedrons, used internally by the verification tool.

 At the end of this statement, ptr points to 
either x or y, resulting in two potential paths 
for the results. In both cases, tmp is greater 
than -19, making the division by zero on the 
second highlighted line impossible. 

Modeling Programming Constructions 
The verification tool must understand the un-
derlying syntax of programming constructions 
such as for-loops, if-then-else, and indetermi-
nate conditions. For instance, it must math-
ematically compute what happens within an 
infinite loop without executing it (Figure 3).

reading Language-Specific  
Constructions
In certain languages, including C++, a mas-
sive amount of computation can be hidden 
behind a single line of code. With object-

Figure 3.  Top: Model invoking two-step 
memorization of variables. Bottom: Code gener-
ated from the model, showing how data ranges 
can be propagated throughout code called within 
an infinite loop. 
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oriented constructs such as inheritance, 
polymorphism, and templates, verifying 
C++ code can quickly become complicated. 
The code verification tool must mathemati-
cally determine which instructions are be-
ing executed at each line of the program. 

Making an Intensive Task Practical
Proving the absence of run-time errors 
such as overflows, divide by zero, and out-
of-bounds array access in source code is an 
intensive task requiring the use of formal 
mathematics and full knowledge of lan-
guage semantics. PolySpace products make 
this task practical because they verify 
source code to prove the absence of certain 
run-time errors without the need to com-
pile and run the code. Since the analysis is 
performed on the source code, they can be 
used in applications involving hand-writ-
ten code, automatically generated code, or a 
combination of the two.  

In addition to performing code verifi-
cation, PolySpace tools test for MISRA-C® 
compliance.  For applications in which code 
is automatically generated from Simulink® 
models or UML diagrams, PolySpace link 
products connect the verification results 
back to the original model. 

PolySpace tools have been applied  
effectively throughout the software develop-
ment and verification process (see sidebar). 
They have been used as a quality gate for code 
written by different development teams. They 
have been integrated with the “submit” and 
“build” steps for individual software compo-
nents, providing more immediate feedback 
to the software developer. With back-anno-
tation links available to modeling tools such 
as Simulink and Rhapsody®, they have been 
used in the design phase to help the system 
engineer or algorithm developer detect de-
sign weaknesses in the design by analyzing 
the automatically generated code. ■ 
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PoLySPACe ProduCTS 
www.mathworks.com/nn8/polyspace

WhITe PAPer: Code Verification and Run-Time Error  
Detection Through Abstract Interpretation 
www.mathworks.com/nn8/abstract_interpretation

verifying Code with PolySpace Products

delphi diesel Systems develops diesel  
injector technology to enable global OEM 
automotive customers to reduce noise lev-
els, pollutant emissions, fuel consumption, 
and torque. Delphi uses PolySpace prod-
ucts to analyze software modules as soon 
as they are  available—before functional 
unit tests. 

NATo hAWK Management office 

(NHMO) maintains a range of com-
plex, mission-critical applications for 
the HAWK surface-to-air missile sys-
tem. To meet reliability standards, the 
NHMO team must identify and elimi-
nate run-time errors. NHMO uses 
PolySpace products to perform a de-
tailed analysis of application dynam-
ics, generating information that helps 
set code review priorities. CSee Transport, a leading developer of sig-

naling and control command systems for 
high-speed rail transportation, uses PolySpace 
products to verify the security software for 
their signaling system. Some run-time errors 
in the hand-written Ada code were undetect-
able by classical verification. CSEE Transport 
used PolySpace products to validate individ-
ual modules before final integration.

GlucoLight Corporation developed a 
noninvasive, continuous glucose moni-
toring system that uses imaging technol-
ogy and requires no manual inter-
vention. To improve the reliability of 
supplier-provided embedded software 
and to prepare for FDA certification, 
GlucoLight used PolySpace products to 
verify new or changed C++ code on a 
class-by-class basis. PolySpace prod-
ucts highlighted error-prone structures, 
enabling developers to avoid using these 
structures in later versions of the code.
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