
1 Reprinted from TheMathWorks News&Notes | 2 0 0 8 w w w . m a t h w o r k s . c o m

TheMathWorks News&Notes

Verifying Code When Software
Reliability Is Critical
By Paul Barnard, Marc Lalo, and Jim Tung

For many embedded software projects, the primary verification

goal is to find as many bugs as possible, as quickly as possible. The static

analysis tools commonly used for this purpose are good at detecting flaws,

but they do not prove that source code is free of fatal run-time errors. As a

result, these tools do not prevent endless debugging loops and lengthy code-

checking procedures. More seriously, they may leave potentially catastrophic

defects undetected —unacceptable for applications that require high reliabil-

ity. PolySpace™ code verificaton products provide a different approach—one

that proves the absence of certain types of run-time errors.

To accomplish this, a code verification
tool must exhaustively investigate every piece
of code and verify its reliability against all
possible data values. It must often perform
tasks of a mathematical sophistication that
exceeds the capabilities of a standard error-
detection tool. For example, it must:

• Solve numerical algorithms
• Interpret pointers
• Mathematically model programming con ­

structions, such as loops, if-then-else, and
undecidable conditions

• Read all language­specific constructions
In addition, the tool must provide diag-

nostics in a format that is simple and acces-
sible to any user (Figure 1).

Solving Numerical Algorithms
Among the arithmetic errors that can occur
in the following code, we need to prove the
absence of a division by zero at the high-
lighted line. The problem can be reformulated Figure 1. Using simple color-coding to show code verification results.

Formal Method: Abstract Interpretation

Green
reliable

Red
faulty

Grey
dead

Orange
unproven

static void Pointer_Arithmetic ()
{
 int tab[100];
 int i,*p = tab;

 for(i = 0; i < 100; i++, p++)
 *p = 0;

 if(get_bus_status() > 0)
 {
 if(get_oil_pressure() > 0)
 *p = 5;
 else
 itt;
 }

 i = random_int();
 if (random_int()) *(p-i) = 10;

 if (0<i && i<=100)
 { p = p - i;
 *p = 5;
 }
}

Green
reliable

Green
reliable

Green
reliable

ProveN

2 Reprinted from TheMathWorks News&Notes | 2 0 0 8 w w w . m a t h w o r k s . c o m

TheMathWorks News&Notes

as the following question: Can x and y be
equal at the same time?

int where_are_the_errors (int input)

{

 int x,y,k,l;

 k = input / 100;

 x = 2;

 y = k + 5;

 while (x < 10)

 {

 x++;

 y = y + 3;

 }

 if ((3*k + 100) > 43)

 {

 y++;

 x = x / (x - y);

 }

 return x;

}

To answer that question, the verification
tool must statically compute x and y, starting
at line 1 and going through the code line by
line, an exhaustive procedure that would be
virtually impossible to perform accurately
during a visual code review.

To solve these kinds of numerical prob-
lems, code verification tools must understand
and model data closely—for example, by us-
ing complex polyhedrons or other geometri-
cal shapes (Figure 2).

reading Pointers (Aliasing)
When data refers to other data —for example,
by means of pointers in the C language —the
verification tool must recognize the original
data and the referenced data. It must then
perform pointer analysis to determine how
the original data and the referenced data af-
fect each other.

In the following code, the verification tool
must recognize that aliasing is subject to a condi-
tional reassignment at the first highlighted line.

define RANGE (X,MIN,MAX) \

X=random; while ((X<MIN) ||

(X>MAX)) X = random;

volatile int random;

int x,y;

int f(int *ptr)

{

 int results;

 if (random) ptr = &y;

 *ptr = *ptr + 1;

 results = x + y + *ptr;

 return results;

}

void main(void)

{

 int tmp;

 RANGE(x, 0, 10);

 RANGE(y, -10, 10);

 tmp = f(&X);

 tmp = (2*tmp*tmp + 3*tmp + 1) /

 (tmp + 19);

 tmp++;

}

Figure 2. A cloud of data points approximated by com-
plex polyhedrons, used internally by the verification tool.

 At the end of this statement, ptr points to
either x or y, resulting in two potential paths
for the results. In both cases, tmp is greater
than -19, making the division by zero on the
second highlighted line impossible.

Modeling Programming Constructions
The verification tool must understand the un-
derlying syntax of programming constructions
such as for-loops, if-then-else, and indetermi-
nate conditions. For instance, it must math-
ematically compute what happens within an
infinite loop without executing it (Figure 3).

reading Language-Specific
Constructions
In certain languages, including C++, a mas-
sive amount of computation can be hidden
behind a single line of code. With object-

Figure 3. Top: Model invoking two-step
memorization of variables. Bottom: Code gener-
ated from the model, showing how data ranges
can be propagated throughout code called within
an infinite loop.

3w w w . m a t h w o r k s . c o m Reprinted from TheMathWorks News&Notes | 2 0 0 8

oriented constructs such as inheritance,
polymorphism, and templates, verifying
C++ code can quickly become complicated.
The code verification tool must mathemati-
cally determine which instructions are be-
ing executed at each line of the program.

Making an Intensive Task Practical
Proving the absence of run-time errors
such as overflows, divide by zero, and out-
of-bounds array access in source code is an
intensive task requiring the use of formal
mathematics and full knowledge of lan-
guage semantics. PolySpace products make
this task practical because they verify
source code to prove the absence of certain
run-time errors without the need to com-
pile and run the code. Since the analysis is
performed on the source code, they can be
used in applications involving hand-writ-
ten code, automatically generated code, or a
combination of the two.

In addition to performing code verifi-
cation, PolySpace tools test for MISRA-C®
compliance. For applications in which code
is automatically generated from Simulink®
models or UML diagrams, PolySpace link
products connect the verification results
back to the original model.

PolySpace tools have been applied
effectively throughout the software develop-
ment and verification process (see sidebar).
They have been used as a quality gate for code
written by different development teams. They
have been integrated with the “submit” and
“build” steps for individual software compo-
nents, providing more immediate feedback
to the software developer. With back-anno-
tation links available to modeling tools such
as Simulink and Rhapsody®, they have been
used in the design phase to help the system
engineer or algorithm developer detect de-
sign weaknesses in the design by analyzing
the automatically generated code. ■

resourcesresourcesresourcesresources

PoLySPACe ProduCTS
www.mathworks.com/nn8/polyspace

WhITe PAPer: Code Verification and Run-Time Error
Detection Through Abstract Interpretation
www.mathworks.com/nn8/abstract_interpretation

verifying Code with PolySpace Products

delphi diesel Systems develops diesel
injector technology to enable global OEM
automotive customers to reduce noise lev-
els, pollutant emissions, fuel consumption,
and torque. Delphi uses PolySpace prod-
ucts to analyze software modules as soon
as they are available—before functional
unit tests.

NATo hAWK Management office

(NHMO) maintains a range of com-
plex, mission-critical applications for
the HAWK surface-to-air missile sys-
tem. To meet reliability standards, the
NHMO team must identify and elimi-
nate run-time errors. NHMO uses
PolySpace products to perform a de-
tailed analysis of application dynam-
ics, generating information that helps
set code review priorities. CSee Transport, a leading developer of sig-

naling and control command systems for
high-speed rail transportation, uses PolySpace
products to verify the security software for
their signaling system. Some run-time errors
in the hand-written Ada code were undetect-
able by classical verification. CSEE Transport
used PolySpace products to validate individ-
ual modules before final integration.

GlucoLight Corporation developed a
noninvasive, continuous glucose moni-
toring system that uses imaging technol-
ogy and requires no manual inter-
vention. To improve the reliability of
supplier-provided embedded software
and to prepare for FDA certification,
GlucoLight used PolySpace products to
verify new or changed C++ code on a
class-by-class basis. PolySpace prod-
ucts highlighted error-prone structures,
enabling developers to avoid using these
structures in later versions of the code.

4

© 2008 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders. 91607v00 10/08

