“Nothing in nature is
random. .. A thing appears
random only through the
incompleteness of our

knowledge.”—Spinoza

12 Fall, 1995

Cleve’s Corner

Random thoughts

10** years is a very long time

by Cleve Moler

Do you recognize this number?
0.21895918632809

If you’re an avid MATLAB user, you’ve probably seen this
number before, but don’t remember it. It’s the first number
produced by the MATLAB random number generator with its
default settings. Start up a fresh MATLAB session, set format
long, type rand, and that’s the number you get.

So, if all MATLAB users, all around the world, on all
different computers, keep getting this same number, is it
really “random”? No, it isn’t. Computers are (in principle)
deterministic machines and should not exhibit random
behavior. If your computer doesn’t access some external
device, such as a gamma ray counter or a clock, then it must
really be computing pseudorandom numbers. My favorite
definition was given in 1951 by Berkeley Professor D. H.
Lehmer, a pioneer in computing and, especially,
computational number theory:

A random sequence is a vague notion....in which each
term is unpredictable to the uninitiated and whose
digits pass a certain number of tests traditional with
statisticians. ..

Lehmer also invented the multiplicative congruential
algorithm, which is the basis for many of the random number
generators in use today. Lehmer’s generators involve three
integer parameters, 4, ¢, and m, and an initial value, x;, called
the seed. A sequence of integers is defined by

X1 = (ax+ ¢)mod m

(The operation “mod m” means take the remainder after
division by m.) For example, with a =13, c=0, m = 31, and
x; = 1, the sequence begins with

1 13 14 27 10 6 16 22 7 29 5 3

What’s the next value? Well, it looks pretty unpredictable,
but you’ve been initiated. So you can compute 13-3 mod 31,
which is 8. The first 30 terms in the sequence are a
permutation of the integers from 1 to 30 and then the
sequence repeats itself. It has a period equal to m-1.

A pseudorandom integer sequence with values between 0
and m can be scaled by dividing by m to give floating-point

MATLAB News & Notes

numbers uniformly distributed in the interval [0, 1]. Our
simple example begins with

0.0323 0.4194 0.4516 0.8710 0.3226 0.1935 0.5161...

The histogram of this sequence is:

There are only a finite number of values—30 in this case. The
smallest value is 1/31; the largest is 30/31. Each number is
equally probable in a long run of the sequence.

The uniform random number function, rand, in the
current release of MATLAB, has similar behavior. It is a
multiplicative congruential generator with parameters

a=7" = 16807
c=0
m=2""-1= 2147483647

These values were recommended in a 1988 paper by S. K. Park
and K. W. Miller, “Random number generators: Good ones
are hard to find” (Comm ACM, vol. 32). Here is a histogram
of 50,000 values produced by rand.

00 M _r_—_—F_————(rr_

500

Each of the 25 bins contains roughly 2,000 numbers. We
would see a similar picture for any other reasonable number
of bins. Our generator satisfactorily passes this histogram test,
which is the admission exam for uniform generators.

Like our toy generator, rand generates all real numbers of
the form k/m for k=1...m-1. The smallest and largest are
0.00000000046566 and 0.99999999953434. It repeats itself after
generating m-1 values, which is a little over two billion
numbers. A few years ago that was regarded as plenty. It
probably still is today, but it’s getting a little skimpy. On a
75 MHz Pentium laptop, we can exhaust the period in fewer
than four hours. Of course, to do anything useful with two
billion numbers takes more time, but we would still like to have
a longer period.

We’ve developed a replacement for our current rand. It
will be part of MATLAB version 5. The new algorithm is based
on advice from George Marsaglia, a professor at Florida State
University, and author of the classic analysis of random
number generators, “Random numbers fall mainly in the
planes,” (Proc. Nat. Acad. Sci., vol 61, 1968).

Marsaglia’s new generator does not use Lehmer’s
multiplicative congruential scheme. In fact, there are no
multiplications or divisions at all. It is specifically designed to
produce floating-point values. The results are not just scaled
integers. And, it is fast. We get close to a “megarand”—a
million random numbers per second—on our laptop.

In place of a single seed, the new generator has 35 words of
internal memory or state. Thirty two of these words form a
cache of floating-point numbers, z, between 0 and 1. The
remaining three words contain an integer'index i, which
varies between 1 and 32, a single random integer j, and a
“borrow” flag b. This entire state vector is built up a bit ata
time during an initialization phase. Different initial states can
be triggered by specifying different values of j.

The generation of the i-th floating-point number in the
sequence involves a “subtract with borrow” step, where one
number in the cache is replaced by the difference of two others.

2= 2490~ Ziys - b

The three indices, 4, i+20, and i+5 are all interpreted mod 32
(by using just their last five bits). The quantity b is left over
from the previous steps; it is either zero or a small positive
value. If the computed z; is positive, b is set to zero for the next
step. But if the computed z; would be negative, it is made
positive by adding 1.0 before it is saved and b is set to 2> for
the next step. The quantity 2%, which is half of MATLAB’s
built-in constant eps, is called one ulp because it is one unit in
the last place for floating-point numbers slightly less than 1.
By itself, this generator would be almost completely
satisfactory. Marsaglia has shown that it has a huge period—
almost 2'**’ values would be generated before it would repeat
itself. But it has one slight defect. All the numbers are the result

of floating-point additions and subtractions of numbers in the
initial cache, so they are all integer multiples of 2",
Consequently, many of the floating-point numbers in [0,1] are
not represented.

The floating-point numbers between 1/2 and 1 are equally
spaced with a spacing of one ulp, and our subtract-with-
borrow generator will eventually generate all of them. But
numbers less than 1/2 are more closely spaced and the
generator would miss most of them. It would generate only
half of the possible numbers in the interval [1/4,1/2], only a
quarter of the numbers in [1/8,1/4], and so on. This is where
the quantity jin the state vector comes in. It is the result of a
separate, independent, random number generator based on
bitwise logical operations. The floating-point fraction of each
z; is xored with j to produce the result returned by the
generator. This breaks up the even spacing of the numbers less
than 1/2. It is now theoretically possible to generate all of the
floating-point numbers between 27°* and 1-27°°. We’re not sure
whether all of them are actually generated, but we don’t know
of any that can’t be.

This graph illustrates what we’re trying to accomplish,
with one ulp equal to 2 instead of 2%,

1716. 1/8 14 12

The graph depicts the relative frequency of each of the
floating-point numbers. A total of 32 floating-point numbers
are shown. Eight of them are between 1/2 and 1 and they are
all equally likely to occur. There are also eight numbers
between 1/4 and 1/2, but since this interval is only half as
wide, each of them should occur only half as often. As we
move to the left, each subinterval is half as wide as the
previous one, but it still contains the same number of
floating-point numbers, so their relative frequencies must be
cut in half. Imagine this picture with 2°* numbers in each of
2°? successively smaller intervals and you will see what our
new random number generator is doing.

With this additional bit fiddling, the period becomes
something like 2'*%. Maybe we should call it the Christopher
Columbus generator. In any case, it will be a very long time
before it repeats itself. At one million per second, it will take
more than 10**° years. Wl

MATLAB News & Notes

Cleve Moler is Chair-

man and co-founder
of The MathWorks.

His e-mail address is

moler@mathworks.com.

Fall, 1995

13

