

Machine Learning Made Easy

David Willingham

Senior Application Engineer

- Machine Learning
 - What is Machine Learning and why do we need it?
 - Common challenges in Machine Learning
- Example 1: Human activity learning using mobile phone data
 - Learning from sensor data
- Example 2: Real-time car identification using images
 - Learning from images
- Summary & Key Takeaways

Machine Learning is Everywhere

- Image Recognition
- Speech Recognition
- Stock Prediction
- Medical Diagnosis
- Data Analytics
- Robotics
- and more...

Machine Learning

Machine learning uses data and produces a program to perform a task

Task: Human Activity Detection

Example: Human Activity Learning Using Mobile Phone Data

Data:

- > 3-axial Accelerometer data
- ➤ 3-axial Gyroscope data

"essentially, all models are wrong, but some are useful" - George Box

Challenges in Machine Learning

Hard to get started

Steps	Challenge
Access, explore and analyze	Data diversity
data	Numeric, Images, Signals, Text – not always tabular

Machine Learning Workflow

Train: Iterate till you find the best model

Predict: Integrate trained models into applications

- Machine Learning
 - What is Machine Learning and why do we need it?
 - Common challenges in Machine Learning
- Example 1: Human activity learning using mobile phone data
 - Learning from sensor data

- Example 2: Real-time car identification using images
 - Learning from images
- Summary & Key Takeaways

Example 1: Human Activity Learning Using Mobile Phone Data

Objective: Train a classifier to classify human activity from sensor data

Data:

Predictors	3-axial Accelerometer and Gyroscope data
Response	Activity:

Approach:

- Extract features from raw sensor signals
- Train and compare classifiers
- Test results on new sensor data

Machine Learning Workflow for Example 1

Train: Iterate till you find the best model

Predict: Integrate trained models into applications

- Machine Learning
 - What is Machine Learning and why do we need it?
 - Common challenges in Machine Learning
- Example 1: Human activity learning using mobile phone data
 - Learning from sensor data
- Example 2: Real-time car identification using images
 - Learning from images

Summary & Key Takeaways

Example 2: Real-time Car Identification Using Images

Objective: Train a classifier to identify car type from a webcam video

Data:

Approach:

- Extract features using Bag-of-words
- Train and compare classifiers
- Classify streaming video from a webcam

Machine Learning Workflow for Example 2

Train: Iterate till you find the best model

Predict: Integrate trained models into applications

- Machine Learning
 - What is Machine Learning and why do we need it?
 - Common challenges in Machine Learning
- Example 1: Human activity learning using mobile phone data
 - Learning from sensor data
- Example 2: Real-time car identification using images
 - Learning from images
- Summary & Key Takeaways

MATILEANG estrient/glack froe Measthimeg Learning

Steps	Challenge
Accessing, exploring and analyzing data	Data diversity
Preprocess data	Lack of domain tools
Train models	Time consuming
Assess model performance	Avoid pitfalls Over Fitting, Speed-Accuracy-Complexity
Iterate	

Key Takeaways

- Consider Machine Learning when:
 - Hand written rules and equations are too complex
 - Face recognition, speech recognition, recognizing patterns
 - Rules of a task are constantly changing
 - Fraud detection from transactions, anomaly in sensor data
 - Nature of the data changes and the program needs to adapt
 - Automated trading, energy demand forecasting, predicting shopping trends

MATLAB for Machine Learning

Email me if you have further questions

Additional Resources

Documentation:

mathworks.com/machine-learning

Q & A