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Agenda

Machine Learning
— What is Machine Learning and why do we need it?
— Common challenges in Machine Learning

Example 1: Human activity learning using mobile phone data
— Learning from sensor data

Example 2: Real-time car identification using images
— Learning from images

Summary & Key Takeaways
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Machine Learning is Everywhere

= Image Recognition
= Speech Recognition
= Stock Prediction

« Medical Diagnosis
- Data Analytics

« Robotics

= and more...
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Machine learning uses data and produces a program to perform a task

Task: Human Activity Detection
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Example: Human Activity Learning Using Mobile Phone Data
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“essentially, all models are wrong,
but some are useful”
— George Box



4\ MathWorks

Challenges in Machine Learning
Hard to get started

Steps Challenge

Access, explore and analyze Data diversity
data Numeric, Images, Signals, Text — not always tabular



Machine Learning Workflow

Train: Iterate till you find the best model
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Example 2: Real-time car identification using images
— Learning from images
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Example 1. Human Activity Learning Using Mobile Phone Data

Objective: Train a classifier to classify
human activity from sensor data

Data:

Predictors 3-axial Accelerometer and

Gyroscope data

Response  Activity: A 0

Approach:
— Extract features from raw sensor signals
— Train and compare classifiers
— Test results on new sensor data
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Machine Learning Workflow for Example 1

Train: Iterate till you find the best model
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— Learning from images

Summary & Key Takeaways
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Example 2: Real-time Car Identification Using Images

Objective: Train a classifier to identify car ]
NEHL N ARUDEL- (S| 0E =D

type from a webcam video
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Data:

Predictors Several images of cars:
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Approach:

— Extract features using Bag-of-words o

— Train and compare classifiers
— Classify streaming video from a webcam
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Machine Learning Workflow for Example 2

Train: Iterate till you find the best model
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Steps

Accessing, exploring and
analyzing data

Preprocess data

Train models

Assess model
performance

Ilterate

Challenge

Data diversity

Lack of domain tools

Time consuming

Avoid pitfalls
Over Fitting,
Speed-Accuracy-Complexity
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Key Takeaways

Consider Machine Learning when:

— Hand written rules and equations are too complex
= Face recognition, speech recognition, recognizing patterns

— Rules of a task are constantly changing
= Fraud detection from transactions, anomaly in sensor data

— Nature of the data changes and the program needs to adapt
= Automated trading, energy demand forecasting, predicting shopping trends

MATLAB for Machine Learning Email me if you have further questions
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Additional Resources

Documentation:

Documentation

= CONTENTS Close

< All Products.

<« Statistics and Machine Learning
Toolbox

Exploratory Data Analysis
Probability Distributions
Hypothesis Tests
Regression and AMOVA
Machine Learning
Supenised Leamning
Unsupervised Learning
Ensemble Learning
Multivariate Data Analysis
Industrial Statistics

Speed Up Statistical Computations

Search R2015a Documentation Documentation ~

§ Trial Software § Product Updates

Machine Learning R2015a
Supenised, unsupenised, and ensemble learning

The aim of machine leaming is to build a model that makes decisions based on evidence in the presence of uncertainty. As adaptive
algorithms identify patterns in data, a computer “learns” from the observations. When exposed to more observations, the computer improves
its decision-making performance.

In supervised learmning, each observation has a corresponding response or label. Cl 1models learn to predict a discrete class
given new predictor data, and regression models learn to predict continuous responses. Applications include spam filters, stock price
forecasts, advertisement recommendation systems, and image and speech recognition. The Statistics and Machine Learning Toolbox™
supenised learning functionalities comprise a stream-lined, object framewaork to train a variety of algorithms efficiently, assess models, and
predict responses

In unsupenised learning, observations are unlabeled. The goal is to learn the structure of the data, such as revealing natural clusters or
variable correlations. Applications include pattern recognition in images and gene expression profiles, identification of crime hot spots, and

microarray data reduction. The Statistics and Machine Learning Toolbox unsupenised learning functionalities include hierarchical and
f-means clustering, and principal component analysis

Machine Learning Basics
Steps in Supenised Learning What Are Linear Regression Models?
Characteristics of Classification Algorithms Introduction to Cluster Analysis

What Are Classification Trees and Regression Trees? Intreduction to Feature Selection

Supervised Learning
Regression, support vector machines, parametric and nonparametric classification, decision frees

Unsupervised Learning
Clustering, Gaussian mixture models, hidden Markov models

Ensemble Learning
Ensembles for boosting, bagging, or random subspace

Was this topic helpful? -
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mathworks.com/machine-learning

Machine Learning with MATLAB

[ contact sales Trial g

Machine Learning with MATLAB Webinar

Learn how to get started using machine learning tools to
detect patterns and build predictive models from your data sets.

(- B inar

Machine learning algorithms use computational methods to “learn” information directly from data without assuming a predetermined equation
as a model. They can adaptively improve their performance as you increase the number of samples available for learning.

Machine learning algorithms are used in applications such as computational finance (credit scoring and algorithmic trading), computational
biology (tumor detection, drug discovery, and DNA sequencing), energy production (price and load forecasting), natural language processing
speech and image recognition, and advertising and recommendation systems.

Machine learning is often used in big data applications, which have large datasets with many predictors (features) and are too complex for a
simple parametric model. Examples of big data applications include forecasting electricity load with a neural network, or bond rating
classification for credit risk using an ensemble of decision trees.

Classification Regression Clustering

Build models to classify data
into different categories.

Build models to predict
continuous data.

Find natural groupings and
patterns in data.

Algorithms: support vector machine (SVM), Algorithms: linear model, nonlinear model,
boosted and bagged decision trees, regularization, stepwise regression, boosted

Algorithms: k-means, hierarchical
clustering, Gaussian mixture models, hidds
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